Abstract
Different catalytic protocols were evaluated in the enantioselective Pd-catalyzed aza-Michael reaction involving monoprotected phenylenediamine (PDA) derivatives. The use of these nucleophilic amines leads to the poisoning of the (monomeric) Lewis acidic catalyst, and significant competitive formation of side products were observed. In contrast, good yields and enantioselectivities can be attained by employing the Bronsted basic–Lewis acidic dimeric Pd catalyst, in combination with PDA derivatives protonated by triflic acid. In this case, the presence of the right amount of water was found to be critical for success (“Goldilocks effect”). The results were rationalized on the basis of delicately balanced acid–base equilibria, dependent upon the nature of the catalyst and the amine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.