Abstract

While brain rhythms appear fundamental to brain function, why brain rhythms consistently organize into the small set of discrete frequency bands observed remains unknown. Here we propose that rhythms separated by factors of the golden ratio optimally support segregation and cross-frequency integration of information transmission in the brain. Organized by the golden ratio, pairs of transient rhythms support multiplexing by reducing interference between separate communication channels, and triplets of transient rhythms support integration of signals to establish a hierarchy of cross-frequency interactions. We illustrate this framework in simulation and apply this framework to propose four hypotheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.