Abstract

Dynamics-on-graph concepts and generalized finite-length Fibonacci sequences have been used to characterize, from a temporal point of view, both human walking & running at a comfortable speed and front-crawl & butterfly swimming strokes at a middle/long distance pace. Such sequences, in which the golden ratio plays a crucial role to describe self-similar patterns, have been found to be subtly experimentally exhibited by healthy (but not pathological) walking subjects and elite swimmers, in terms of durations of gait/stroke-subphases with a clear physical meaning. Corresponding quantitative indices have been able to unveil the resulting hidden time-harmonic and self-similar structures. In this study, we meaningfully extend such latest findings to the remaining two swimming strokes, namely, the breast-stroke and the back-stroke: breast-stroke, just like butterfly swimming, is highly technical and involves the complex coordination of the arm and leg actions, while back-stroke is definitely similar to front-crawl swimming. An experimental validation with reference to international-level swimmers is included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.