Abstract

We consider extensive form 2-player win-lose games, with alternating moves, of perfect and complete information. The games are played over a complete binary-tree of depth n, where 0/1 payoffs in the leaves are drawn according to an i.i.d. Bernoulli distribution with probability p. Whenever p differs from the golden ratio, asymptotically as n→∞, the winner of the game is determined. In the case where p equals the golden ratio, we call such a random game a golden game. In golden games the winner is the player that acts first with probability equal to the golden ratio. We suggest the notion of fragility as a measure for “fairness” of a game's rules. Fragility counts how many leaves' payoffs should be flipped in order to convert the identity of the winning player. Our main result provides a recursive formula for asymptotic fragility of golden games. Surprisingly, golden games are extremely fragile. For instance, with probability ≈0.77 a losing player could flip a single payoff (out of 2n) and become a winner. With probability ≈0.999 a losing player could flip 3 payoffs and become the winner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.