Abstract

In this work, different weight percentage of gold-selenide quantum dots (AuSe QDs) (1.0, 2.5, 5.0 and 7.0 wt.%) were successfully synthesized and decorated on cesium ferrite nanocomposite (Cs2Fe2O4 NC). The as-prepared pure AuSe QDs, pure Cs2Fe2O4 NC, and x wt.% AuSe QDs/Cs2Fe2O4 NC photocatalysts were investigated using different characterization techniques such as nitrogen adsorption desorption isotherms (BET), X-ray diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-vis absorption spectroscopy. The results show that AuSe QDs were uniformly distributed on Cs2Fe2O4NCs surface as spherical dots with an average size of 1.0–8.0 nm. While the Cs2Fe2O4 NCs possess an average size between 10 to 35 nm. The photocatalytic performance of x wt. % AuSe QDs/Cs2Fe2O4NCs were measured through the photodegradation of rhodamine B (RhB) dye as a model water pollutant, under a150 W-Mercury lamp with a filter (JB400) as a simulated source of visible light. The results revealed that the % degradation of RhB increased from 50.0 %, 59.1 %, 76.4 %, and to 99.15 % within 150 min for the pure Cs2Fe2O4, 1.0, 2.5 and 5.0 wt.% AuSe QDs/Cs2Fe2O4 NC photocatalysts, respectively. The 5.0 wt.% AuSe/Cs2Fe2O4 NC sample showed highest photocatalytic activity. The effect of recycling also studied. High photocatalytic performance and superior stability confirmed that the prepared nanocomposites act as good photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call