Abstract
This research aims to resolve the heteroscedasticity problem in time series data by modeling and analyzing volatility the gold return using GARCH models. Heteroscedasticity means not the constant variance of residuals. The sample data is a return data from January 1, 2014 to September 23, 2016. The data analysis technique used is a stationary test, model identification, model estimation, diagnostic check, heteroscedasticity test, GARCH model estimation, and evaluation. The results showed that ARIMA (3,0,3)-GARCH (1.1) is the best model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.