Abstract

The present work investigates gold recovery using DEAE-cellulose, a common biopolymer derivative, from synthetically prepared diluted gold-bearing solutions of 50 ppm. The effects of different recovery parameters on gold recovery efficiency were studied in detail. It was demonstrated that gold recovery efficiency increased with an increasing amount of sorbent, as well as increasing contact time. A gold recovery efficiency of 99% was attained under conditions of 20–40 g DEAE-cellulose per liter at a shaking rate of 130 rpm for 30 min at room temperature. On the other hand, with smaller amounts of sorbent (6 g/l), it was also possible to recover gold from the solution with 99% efficiency when the reaction temperature was increased to 60 °C. The shaking rate and temperature were demonstrated to play a vital role in the recovery process. It was also found that gold recovery by DEAE-cellulose is an intermediate-controlled process with an activation energy of 37.11 kJ/mol. The XRD pattern and SEM images revealed that the recovered gold was in the metallic form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call