Abstract
Inspired by the promising applications of a closed bipolar electrodes (c-BPEs) system in electrochemiluminescence (ECL) detection of cell adhesion and disease-related biomarkers, here, a gold nanowires array-based c-BPEs system was constructed for cell surface protein detection. Regular and uniform gold nanowires array were prepared by intermittent potentiostatic deposition. Then, two poly(dimethylsiloxane) (PDMS) chips with a hole diameter of 2 mm as a reservoir were placed at both sides of Au nanowires array to construct c-BPEs system. Thionine-functionalized silicon dioxide nanoparticles conjugated to antibody (Ab2-Th@SiO2) were used as the electrochemical probe, while [Ru(bpy)3]2+-wrapped SiO2 nanoparticles (Ru(II)@SiO2) were employed as the ECL signal readout. Taking α-fetoprotein (AFP) as model, the gold nanowires array-based c-BPEs system allowed sensitive detection of AFP at a linear range from 0.002 to 50.0 ng/mL and at least 6 living cells ascribing to the synergetic amplification effect at both sensing and reporting chambers. Besides, the amount of AFP expressed by HepG2 cells was calculated to be 6.71 pg/cell. The presented strategy with high sensitivity provided a promising and universal platform for the detection of other cancer cells and disease-related biomarkers (such as proteins, glycan, miRNA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.