Abstract

Nanosecond pulsed laser ablation of gold with an excitation wavelength of 532 nm was conducted in supercritical CO2 to generate gold nanoparticles, which were then investigated by scanning electron microscopy and small-angle X-ray scattering, and their extinction spectra and simulated extinction spectra were studied. Both the morphology and amount of gold nanoparticles changed significantly with changes in the density of supercritical CO2 during laser ablation. In a gaslike density, a network structure consisting of nanonecklaces was the major product, whereas in a liquidlike density, large nanospheres with an average diameter (⟨D⟩) of 500 nm were produced. After absorption of multiphoton of excitation light, the gold nanonecklaces and large nanospheres were generated by the fragmentation and solidification, respectively, of liquid gold droplets with ⟨D⟩ = 500 nm. The amount of both products changed according to the branching ratio, which determined whether the liquid gold droplets followed the fragmentat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.