Abstract

The application of asymmetric-flow field flow fractionation (A4F) for low aspect ratio gold nanorod (GNR) fractionation and characterization was comprehensively investigated. We report on two novel aspects of this application. The first addresses the analytical challenge involved in the fractionation of positively charged nanoparticles by A4F, due to the interaction that exists between the negatively charged native membrane and the analyte. We show that the mobile phase composition is a critical parameter for controlling fractionation and mitigating the membrane-analyte interaction. A mixture of ammonium nitrate and cetyl trimethyl ammonium bromide at different molar ratios enables separation of GNRs with high recovery. The second aspect is the demonstration of shape-based separation of GNRs in A4F normal mode elution (i.e., Brownian mode). We show that the elution of GNRs is due both to aspect ratio and a steric-entropic contribution for GNRs with the same diameter. This latter effect can be explained by their orientation vector inside the A4F channel. Our experimental results demonstrate the relevance of the theory described by Beckett and Giddings for non-spherical fractionation (Beckett and Giddings, J Colloid and Interface Sci 186(1):53-59, 1997). However, it is shown that this theory has its limit in the case of complex GNR mixtures, and that shape (i.e., aspect ratio) is the principal material parameter controlling elution of GNRs in A4F; the apparent translational diffusion coefficient of GNRs increases with aspect ratio. Finally, the performance of the methodology developed in this work is evaluated by the fractionation and characterization of individual components from a mixture of GNR aspect ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.