Abstract
The emergence of the pandemic 2009 H1N1 influenza virus has become a world-wide health concern. As drug resistance appears, a new generation of therapeutic strategies will be required. Here, we introduce a nanotechnology approach for the therapy of pan-demic and seasonal influenza virus infections. This approach uses gold nanorods (GNRs) to deliver an innate immune activator, pro-ducing a localized therapeutic response. We demonstrated the utility of a biocompatible gold nanorod, GNR-5'PPP-ssRNA nanoplex, as an antiviral strategy against type A influenza virus. In human respiratory bronchial epithelial cells, this nanoplex activated the retinoic acid-inducible gene I (RIG-I) pathogen recognition pathway, resulting in increased expression of IFN-beta and other IFN-stimulated genes (ISGs) (e.g., PKR, MDA5, IRF1, IRF7, and MX1). This increase in type I IFN and ISGs resulted in a decrease in the replication of H1N1 influenza viruses. These findings suggest that further evaluation of biocompatible nanoplexes as unique antivirals for treatment of seasonal and pandemic influenza viruses is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.