Abstract

Infrared neural stimulation (INS) is a new and developing approach for neural repair, with the advantages of being non-contact, spatially precise, and artifact-free. However, the disadvantage of infrared light is that it is difficult to stimulate deep tissue because of its weak penetrating power. Therefore, this paper introduces an improved method using near-infrared laser to stimulate bullfrog sciatic nerves because of its strong penetrating power. Meanwhile, gold nanorods (Au NRs) are injected into the nerve to increase the absorption of light. The mechanism is the instantaneous temperature rise caused by the absorption of infrared light by Au NRs. The compound muscle action potential (CMAP) associated with the irradiated sciatic nerve is recorded by a multi-channel physiological signal instrument. The peak to peak amplitude (Vpp) of CMAP for sciatic nerves injected with Au NRs increases significantly compared to the CMAP for control nerves without Au NRs. These results demonstrate INS by labeling nerves with nanoparticle exhibiting latent capacity to increase the efficiency, spatial resolution, and the neural responsivity, and especially, can increase the penetration depth and reduce the requisite radiant exposure level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.