Abstract

In the current scenario, the dominance of cancer is becoming a disastrous threat to mankind. Therefore, an advanced analytical approach is desired as the need of the hour for early diagnosis to curb the menace of cancer. In this context, the present work reports the development of nano surface energy transfer (NSET) based fluorescent immunosensor for carcinoembryonic antigen (CEA) detection utilizing protein functionalized graphene quantum dots (anti-CEA/amine-GQDs) and a nanocomposite of nanostructured gold and reduced graphene oxide (AuNPs@rGO) as energy donor-acceptor pair, respectively. The obtained AuNPs@rGO nanocomposite has been characterized by different advanced analytical techniques. The functionality of the biosensor depends on quenching the fluorescence of anti-CEA/amine-GQDs donor species by AuNPs@rGO acceptor species, followed by the gradual recovery of GQDs' fluorescence after CEA addition. The efficient energy transfer kinetics have been envisaged by utilizing the AuNPs@rGO nanocomposite as a dual-quencher nanoprobe that revealed improved energy transfer and quenching efficiency (∼62 %, 88 %) compared to AuNPs (∼43 %, 81 %) as a single quencher. Further, the developed biosensing platform successfully detected CEA biomarker with notable biosensing parameters, including a wider linear detection range (0.001–500 ng mL−1), fast response time (24 min), and a significantly low detection limit (0.35 pg mL−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.