Abstract

This research reports fabrication of three Polymer Electrolyte Membrane fuel cells (PEMFC) using composite of gold nanoparticles and nanotube graphene by varying concentration of Gold nanoparticles. The outer most layer of multiwall carbon nanotubes is un-zipped and nano ribbons of graphene are developed to attain a durable electrode. Moreover, the addition of gold nanoparticles adds benefit of better conductance over usual platinum electrodes. The effect of changing gold concentration on properties of composite material as well as fuel cell performance is investigated. The presence of gold nanoparticles and graphene nano-ribbons attached to carbon nanotubes are identified using SEM, TEM, and Raman analysis. Cyclic voltammetry analysis has showed that increase in concentration of gold nano particles improves the performance of fuel cell. EIS analysis reveled that the polarization resistance decreased by increasing the Au concentration. Thermal Gravimetric Analysis proved the thermal stability of composite material. Maximum power density of 242.29 mWcm−2 is achieved for the highest concentration of Gold nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call