Abstract

Periodontitis is a chronic disease caused by bacterial infection and is characterized with alveolar bone resorption. Bone regeneration in periodontitis remains a critical challenge because bacterial infection induced an unfavorable microenvironment for osteogenesis. Therefore, it is necessary to design proper therapeutic platforms to control bacterial infection and promote bone regeneration. Herein, mesoporous bioactive glass (MBG) with different pore sizes (3.0, 4.3, and 12.3 nm) was used as an in situ reactor to confine the growth of gold nanoparticles (Au NPs), forming MBG@Au hybrids which combine the osteoconductivity of MBG and antibacterial properties of Au NPs. Upon near-infrared (NIR) irradiation, the MBG@Au NPs showed efficient antibacterial properties both in vitro and in vivo. Besides, the osteogenesis properties of MBG@Au also improved under NIR irradiation. Furthermore, the in vivo results demonstrated that MBG@Au can effectively promote alveolar bone regeneration and realize the healing of serious periodontitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.