Abstract
Anti-human immunodeficiency (HIV)-drug azidothymidine interferes with the reverse transcriptase enzyme, which results in reduced activity of HIV thereby inhibiting the growth of the virus. Owing to the side effects of high doses and short half-life of this antiviral drug azidothymidine (AZT): a fast and convenient method for its detection would be helpful for HIV patients getting treated with AZT. Referring to this, we synthesized a Biginelli based receptor R1 and evaluated its sensing properties towards AZT with different techniques (UV–Visible, circular dichroism (CD), cyclic voltammetry (CV) by preparing its organic nanoparticles (ONPs) and gold-coated ONPs (AuNP@ONP). The formation of AuNP@ONP was confirmed by UV–Visible spectroscopy, cyclic voltammetry, and HRTEM. It was observed that both the probes selectively sense AZT among various thymidine analogs but AuNP@ONP showed better response on CV, Differential pulse voltammetry (DPV) and, linear sweep voltammetry (LSV) with a detection limit of 6 nM. Proton NMR (1H NMR) reveals that the azide group present at the 3’ position is responsible for the selective response of AZT with probes. Quantitative determination by the probes in the pharmaceutical sample gives the recovery percentage above 97%. Hence, economic, affordable, ready-to-use chemosensor for AZT (in an aqueous medium) with low detection limit having satisfactory utility for HIV supplements have been developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.