Abstract

In this work, a novel method of Au nanoparticles (NPs) modified polymer monolithic capillary microextraction (CME) on-line coupling with inductively coupled plasma-mass spectrometry (ICP-MS) was developed for the determination of trace rare earth elements (REEs) in environmental and biological samples. The poly(glycidyl methacrylate-ethylene dimethacrylate) monolithic capillary was prepared, functionalized with thiol ligands for the attaching of Au NPs, and then modified with mercaptosuccinic acid to provide massive carboxyl groups which have high affinity to REEs. With the modification of Au NPs, the adsorption capacity of the monolith towards target REEs has been improved by 3 to 6.5 times. Under the optimized conditions, the limits of detection of the developed method for REEs were in the range of 0.16 (Tb)–0.85 (Gd) ngL−1. The enrichment factor was 25-fold with the sample throughput of 10h−1. And the relative standard deviations were between 2.7 (Lu) and 9.8% (Dy) (c=10ngL−1, n=9). The accuracy of the method was validated by the analysis of a standard stock solution of GSB04-1789-2004 and a Certified Reference Material of GBW07301a stream sediment. The proposed method was applied for the analysis of trace REEs in seawater samples as well as human whole blood with good recoveries. The prepared monolith is featured with strong anti-interference ability, superior adsorption capacity as well as long lifespan, and the developed monolithic CME-ICP-MS is sensitive, simple and rapid for the analysis of trace/ultra-trace REEs in environmental and biological samples with complex matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.