Abstract

The intensive development of nanotechnology led to the widespread application of various nanoparticles and nanomaterials. As a result, nanoparticles enter the environment and accumulate in ecosystems and living organisms. The consequences of possible impact of nanoparticles on living organisms are not obvious. Experimental data indicate that nanoparticles have both toxic and stimulating effects on organisms. In this study, we demonstrated for the first time that gold nanoparticles can act as adaptogens increasing plant freezing tolerance. Priming winter wheat (Triticum aestivum L., var. Moskovskaya 39, Poaceae) seeds for 1day in solutions of gold nanoparticles (15-nm diameter, concentrations of 5, 10, 20, and 50µg/ml) led to an increase in freezing tolerance of 7-day-old wheat seedlings. A relationship between an increase in wheat freezing tolerance and changes in some important indicators for its formation-growth intensity, the activity of the photosynthetic apparatus and oxidative processes, and the accumulation of soluble sugars in seedlings-was established. Assumptions on possible mechanisms of gold nanoparticles effects on plant freezing tolerance are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call