Abstract

An electrochemical sensor is described for simultaneous voltammetric determination of dopamine (DA) and uric acid (UA). It is based on the use of a nanomaterial composed of gold nanoparticles and 3-dimensional graphene (Au NP@3D GR). The 3D GR was prepared by chemical vapor deposition using nickel nanoparticles as the template at a temperature of around 900°C. The surface of 3D GR contains oxygen-functional groups after treatment with acid. Carboxylated Au NP were self-assembled and anchored onto the surface of 3D GR. The nanomaterial was placed on a ITO electrode. The few-layer graphene on the ITO glass has a porous structure and the distribution of Au NP is uniform. The electrode shows a high sensitivity and a low detection limit for DA and UA. Figures of merit include detection limits of 0.1M for DA and of 0.1μM for UA, and well separated peaks at potentials of 0.18 and 0.30V (vs. Ag/AgCl), respectively, at pH7.0. The electrode has good repeatability and stability. Graphical abstract Carboxylated gold nanoparticles were self-assembled and immobilized on 3-dimensional graphene by chemical vapor deposition for simultaneous determination of dopamine (DA) and uric acid (UA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.