Abstract
Development of a facile and cost-effective surface-enhanced Raman scattering (SERS) sensor with high sensitivity for the on-site rapid detection of trace molecules is a compelling need. Here we report how a capillary-based three-dimensional network porous silica material decorated with gold nanoparticles (3D-PSM@AuNPs) serves as an ideal platform for the rapid static liquid-phase detection of trace molecules. The SERS sensor is prepared by an in situ polymerization method to form a 3D continuous interconnected porous network in an ultraviolet transparent quartz capillary with a facile fabrication process. The unique porous network of the silica, which could provide a high specific surface area in a focus volume, endows the resultant material with a high density of SERS enhancement sites and a “hot-spot”, which has precisely guaranteed the detection sensitivity. More importantly, the unique structure of the capillary could also present an aid to reduce the energy loss of the laser via multiple reflections and thus effectively improve the utilization rate of the laser beam. Using 4-mercaptopyridine (4-MPY) in aqueous solution as a model molecule, the porous silica material exhibits a high detection sensitivity (10–11 M), excellent stability, and repeatability. Moreover, the obtained 3D-PSM@AuNP sensor is applied for the analysis of phosmet residues on orange peel and vegetables. The results demonstrate that this 3D-PSM@AuNP sensor can successfully realize Raman reporter-free and rapid on-site detection of trace molecules in liquids, which provides a promising platform in various fields of micro-volume liquid sample analysis, especially in liquid biopsy analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.