Abstract

We describe the engineering of stable gold nanoparticle (AuNP) bioconjugates for the detection of staphylococcal enterotoxin A (SEA) using localized surface plasmon resonance (LSPR). Two types of AuNP bioconjugates were prepared by covalently attaching anti-SEA antibody (Ab) or SEA to AuNPs. This was achieved by reacting Traut's reagent with lysine residues of both proteins to generate thiol groups that bind to gold atoms on the AuNP surface. These bioconjugates were characterized in-depth by absorption spectroscopy, cryo-transmission electron microscopy, dynamic light scattering, and zeta potential measurements. Their stability over time was assessed after 1year storage in the refrigerator at 4°C. Two formats of homogeneous binding assays were set up on the basis of monitoring of LSPR peak shifts resulting from the immunological reaction between the (i) immobilized antibody and free SEA, the direct assay, or (ii) immobilized SEA and free antibody, the competitive assay. In both formats, a correlation between the LSPR band shift and SEA concentration could be established. Though the competitive format did not meet the expected analytical performance, the direct format, the implementation of which was very simple, afforded a specific and sensitive response within a broad dynamic range-nanogram per milliliter to microgram per milliliter. The limit of detection (LOD) of SEA was estimated to equal 5ng/mL, which was substantially lower than the LOD obtained usinga quartz crystal microbalance. Moreover, the analytical performance of AuNP-Ab bioconjugate was preserved after 1year of storage at 4°C. Finally, the LSPR biosensor was successfully applied to the detection of SEA in milk samples. The homogeneous nanoplasmonic immunosensor described herein provides an attractive alternative for stable and reliable detection of SEA in the nanogram per milliliter range and offers a promising avenue for rapid, easy to implement, and sensitive biotoxin detection. Sensitive LSPR Biosensing of SEA in buffer and milk using stable AuNP-Antibody bioconjugates Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.