Abstract

Centimeter-scale gold nanoparticle (Au NP) monolayer films have been fabricated using a water/organic solvent self-assembly strategy. A recently developed approach, drain to deposit, is demonstrated to be most effective in transferring the Au NP films from the water/organic solvent interface to various solid substrates while maintaining their integrity. The interparticle spacing was tuned from 1.4 to 3.1 nm using alkylamine ligands of different lengths. The ordering of the films increased with increasing ligand length. The surface plasmon resonance and the in-plane electrical conductivity of the Au NP films both exhibit an exponential dependence on the interparticle spacing. These findings show great potential in scaling up the manufacturing of high-performance optical and electronic devices based on two-dimensional metallic nanoparticle superlattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call