Abstract

Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

Highlights

  • Laser transfection of cells is a growing research field in the area of molecule delivery as an alternative to established transfection methods like lipofection or electroporation

  • In order to combine the mentioned advantages of laser transfection with a high throughput, we describe a technique termed gold nanoparticle mediated (GNOME) laser transfection: The cells are incubated with gold nanoparticles (AuNP) with a diameter of 200 nm

  • We demonstrated for the first time a functional gene knock down by means of GNOME laser transfection

Read more

Summary

Introduction

Laser transfection of cells is a growing research field in the area of molecule delivery as an alternative to established transfection methods like lipofection or electroporation. In most cases the manipulation laser is focused through the objective of an inverse microscope onto the cell surface to create a spatially confined pore, which allows the diffusion of extracellular molecules into the cytoplasm. Using this approach, delivery of different molecules into cell lines, primary cells and stem cells has been demonstrated [1,2,3]. Delivery of different molecules into cell lines, primary cells and stem cells has been demonstrated [1,2,3] It allows efficient and gentle transfection of cell lines as well as sensitive cell types, but bears some major disadvantages: The used femtosecond laser systems are expensive, bulky and their operation needs a high degree of technical expertise. Being quite successful for single cell applications, laser based transfection has not reached broad routine usage to date

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.