Abstract

We report on an electrochemical sensor for the determination of methyl parathion. It is based on an electrode modified with multi-walled carbon nanotubes that were covered with gold nanoparticles (Au-NPs). The vertically aligned array of MWCNTs on a tantalum substrate was coated with Au-NPs by overhead magnetron sputtering deposition. Scanning and transmission electron microscopy and XRD were used to characterize the Au-NP-MWCNTs composite. Cyclic voltammetry and differential pulse voltammetry were employed to evaluate the suitability of the new electrode for the determination of methyl parathion. Under the optimal conditions, the current response of the electrode to methyl parathion is linear in the range from 0.50 to 16.0 mg mL-1, with a detection limit of 50 μg mL-1 (signal/noise = 3), and the sensitivity is 4.5 times better than that of the plain MWCNTs electrode. We conclude that this method represents a simple, rapid, effective and sensitive approach for the detection of methyl parathion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.