Abstract

Kinetic poisoning experiments employing organic ligands were conducted using a gold nanoparticle–catalyzed reaction consisting of the reduction of resazurin to resorufin. The kinetic contributions of three distinct types of sites along with the number density of each of these site types during reaction were determined. The calculated number densities of each of the three types of sites, hypothesized to be corners, edges, and terraces, correlates well with atomic-resolution micrographs of the supported gold nanoparticles, obtained using aberration-corrected transmission electron microscopy and with predictions based on geometric models of idealized gold nanoparticles. The most active sites comprising 1% of the surface atoms exhibit at least 30% of the total activity of the catalyst for resazurin reduction. The selective mechanical blocking of surface sites on nanoparticles, particularly undercoordinated sites, paves the way for novel approaches utilizing organic ligands to quantify the activity of different active sites and control catalysis on metal surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.