Abstract

Gold nanoparticles (AuNPs) are widely used as colorimetric probes for biosensing, relying on their unique particle size-dependent and/or interparticle distance-dependent extinction spectrum and solution color. Herein, we describe an AuNP-based colorimetric assay to detect binding interactions between nuclear hormone receptors and their corresponding DNA-binding elements, particularly the human estrogen receptors (ERalpha and ERbeta) and their cognate estrogen response elements (EREs). We found that the protein-DNA (ER-ERE) complexes can stabilize citrate anion-capped AuNPs against salt-induced aggregation to a larger extent than the protein (ER) or the DNA (ERE) alone, due to their unique molecular size and charge properties that provide a strong electrosteric protection. Moreover, our results show that the extent of stabilization is sequence-dependent and can distinguish a single base variation in the ERE associated with minor changes in protein-DNA binding affinity. With this assay, many important parameters of protein-DNA binding events (e.g., sequence selectivity, distinct DNA binding properties of protein subtypes, binding stoichiometry, and sequence-independent transient binding) can be determined instantly without using labels, tedious sample preparations, and sophisticated instrumentation. These benefits, in particular the high-throughput potential, could enable this assay to become the assay of choice to complement conventional techniques for large scale characterization of protein-DNA interactions, a key aspect in biological research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call