Abstract

Photoinduced hyperthermia is a cancer therapy technique that induces death to cancerous cells via heat generated by plasmonic nanoparticles. While previous studies have shown that some nanoparticles can be effective at killing cancer cells under certain conditions, there is still a necessity (or the need) to improve its heating efficiency. In this work, we perform a detailed theoretical study comparing the thermoplasmonic response of the most effective nanoparticle geometries up to now with a doughnut-shaped nanoparticle. We numerically demonstrate that the latter exhibits a superior tunable photothermal response in practical illumination conditions (unpolarized light). Furthermore, we show that nanoparticle heating in fluidic environments, i.e., nanoparticles undergoing Brownian rotations, strongly depends on the particle orientation with respect to the illumination source. We conclude that nanodoughnuts are the best nanoheaters in our set of structures, with an average temperature increment 40% higher than the second best nanoheater (nanodisk). Furthermore, nanodoughnuts feature a weak dependence on orientation, being therefore ideal candidates for photothermal therapy applications. Finally, we present a designing guide, covering a wide range of toroid designs, which can help on its experimental implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.