Abstract

Metalloenzymes are able to catalyze complex biochemical reactions in cellular (aqueous) media with high efficiency. In recent years, a variety of metal-containing single-chain nanoparticles (SCNPs) have been synthesized as simplified metalloenzyme-mimetic nano-objects. However, most of the metal-containing SCNPs reported so far contained complexed metal ions but not metal nanoclusters (NCs) with diameter <5 nm, which could be used as powerful, emerging catalysts. Herein, we report the synthesis of gold nanoclusters (Au-NCs) within SCNPs and the further use of Au-NCs/SCNPs as catalytic nanoreactors in water. We demonstrate that a common motif contained in several drugs (i.e., the aminophenyl-oxazolidinone fragment present in Rivaroxaban, Sutezolid, and Linezolid) can be efficiently prepared in water from a hydrophobic precursor compound by using the Au-NCs/SCNPs as efficient catalytic nanoreactors. In summary, this work paves the way forthe synthesis of metal-NCs/SCNPs for advanced catalysis in aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.