Abstract

We report a facile synthesis of a thiolate-protected water-soluble ultrasmall cubic copper nanocluster-based metal-organic framework (CuMOF) as an efficient and chemoselective catalyst for the azide-alkyne click reaction. Interestingly, the diffuse reflectance spectra of CuMOFs exhibit three discrete plasmon bands at 463, 505, and 674 nm, which are similar to those corresponding to the fingerprint region of thiolate-protected atomically precise Au25 nanoclusters; hence, CuMOFs are termed as gold-like ultrasmall cubic copper nanoclusters. The high-resolution transmission electron microscopy (HRTEM) and powder X-ray diffraction (XRD) patterns confirm the cubic morphology of CuMOFs with nanoclusters showing particle size distribution of ∼2-12 nm. The matrix-assisted laser desorption ionization (MALDI) spectrum of CuMOFs is attributed to the individual particles consisting of few Cun(SR)m with Cu(0) core atoms and Cu(I)SR staples, i.e., Cu2(SR)4, Cu(SR)6, Cu3(SR)7, and Cu4(SR)8. To our surprise, the unsymmetric bistriazoles resulting from the click reaction of bifunctional azides and alkynes in the presence of CuMOFs were achieved by step-by-step conversion of the terminal azide selectively with maximum yield in the range of 70-88%. The nitrogen adsorption-desorption studies confirm the size-dependent surface area, pore volume, and pore size for the CuMOFs prepared by varying metal-to-ligand ratios. The plausible mechanism for the selective mono-click at CuMOFs suggests the existence of bifunctional terminal interactions via thiol and sulfonate groups that might have provided the site-isolation-based active sites for selective catalysis. The easy recovery of CuMOFs and their reusability up to 5 times without significant loss of activity are very promising for the selective organic conversions in pharmaceutical and industrial formulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call