Abstract
AbstractSoft electrodes are essential components of soft robotics, tunable optics, microfluidics, flexible electronics, neuroprosthetics, and dielectric elastomeric transducers (DET). The two main paths employed to increase an electrode's compliance involve the manipulation of either its intrinsic material properties or its structural features, such as the introduction of wrinkles, which arise above the critical stress of metal films on elastomeric substrates. Herein, this study demonstrates that the interplay between functionalized oxygen‐plasma‐treated polydimethylsiloxane (PDMS) films and sputter‐deposited metal electrodes allows for conserving compressive stress within the electrode. Insulator–metal transition already occurs for 10 nm thin Au electrodes, and below this electrode thickness, atomic force microscopy nanoindentations with sub‐micrometer resolutions reveal no stiffening of the Au/PDMS heterostructure. These DETs exhibit reduced electrocreasing, which is a significant contributor to structural failure, while their enhanced dielectric breakdown field of up to 120 V µm–1 enables calculated strains above 10% — a crucial requirement for thin‐film DETs such as those used for artificial muscles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.