Abstract

Introducing an atomic Au monolayer between a Pb film and a Si(100) substrate allows us to fabricate Pb films with single- and double-atom thicknesses. The Pb films have a 2D square-lattice structure with the 1D atomic chains of Pb adatoms on their top, forming Si(100)1 × 7-(Pb, Au) and Si(100)5 × 1-(Pb, Au) superstructures for single and double atomic Pb layers, respectively. Their common characteristic feature is the occurrence of bundles of quasi-1D metallic bands. Transport measurements showed that samples with a Au interlayer demonstrate enhanced superconductor properties, as compared to Pb layers grown on the bare Si(100) surface. Toward improved superconductor properties, the (Pb, Au)/Si(100) system successively avoids risks associated with possible intermixing between adsorbate layers and substrate, as well as with possible Peierls transition into an insulator state, typical for the 1D systems. This finding opens new ways to control low-dimensional superconductivity at the atomic-scale limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.