Abstract

Mantle pyroxenites are the crystallised products of mafic silicate melts, which are commonly invoked as metasomatic agents in the upper mantle. This study has analysed the trace elements of sulfides, with a specific focus on gold, hosted in a suite of mantle pyroxenite xenoliths from Qilin in the Cathaysia Block, southeast China. These are compared with sulfides hosted in peridotite xenoliths from the same locality to assess the difference in the abundances of Au, and a suite of siderophile and chalcophile elements between the sulfides hosted in mobile melts in the upper mantle and their host “wall” rocks.Both the peridotite- and pyroxenite-hosted sulfides show a wide spectrum of trace element contents. The pyroxenite-hosted sulfides typically have PGE and Au concentrations that are an order of magnitude or more below those measured in the peridotite-hosted sulfides (lherzolite-hosted sulfides: total PGE=95±118 ppm, Au=1.4±2.6 ppm; pyroxenite-hosted sulfides: total PGE=0.25±0.70 ppm, Au=0.14±0.39 ppm). Furthermore, the Ir group PGE (Ir, Os and Ru) are present in lower concentrations than the Pd-group PGE (Pd, Pt and Rh). This may lead to a distinct signature if the melts from which these sulfides crystallise interact with lherzolitic sulfides. The overall low abundances of these elements within the pyroxenites suggests that the parent melts are an inefficient medium for enriching any of these elements in the upper mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.