Abstract

Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call