Abstract

The synthesis and characterization of two dinuclear and five tetranuclear gold(I) complexes bearing the 2,6-bis(diphenylphosphinomethyl)pyridine diphosphane ligand (DPPMPY) are herein reported. The reaction between the dinuclear complexes, DPPMPY(AuCl)2 (1) or DPPMPY(AuBr)2 (2), with 1 or 2 equivalents of Ag salts yielded five tetranuclear gold(I) complexes, DPPMPY2Au4X2 (3-7), differing in the terminal ancillary ligands (X = Cl, Br, acetonitrile) and the counter ions (SbF6- or BF4-). The structures of complexes 1, 2, 3, and 5 were confirmed by single-crystal X-ray diffraction studies. The Au⋯Au distances found in complexes 3 and 5 are in the range of aurophilic interactions and the arrangement of the Au atoms varies from a linear arrangement in complex 3 to a zigzag arrangement in complex 5. The photophysical characterization of the compounds was performed both in solution and in the solid state. Very high emission quantum yields were observed for the acetonitrile complexes 4 and 6 in the solid state. The use of this family of gold(I) complexes as catalysts for lactone synthesis via oxidative heteroarylation of alkenes was investigated and yields up to ca. 65% were obtained. Dicationic halide complexes 3 and 5 showed a slight enhancement of the yield of the catalytic reaction, indicating that there is no influence of the counter ion employed on the reaction outcome. Luminescence techniques have been also used to follow the progress of the catalytic reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.