Abstract

We have recently shown that metamaterials composed of three-dimensional gold helices periodically arranged on a square lattice can be used as compact "thin-film" circular polarizers with one octave bandwidth. The physics of the motif of these artificial crystals is closely related to that of microwave sub-wavelength helical antennas in end-fire geometry. Here, we systematically study the dependence of the metamaterial's chiral optical properties on helix pitch, helix radius, two-dimensional lattice constant, wire radius, number of helix pitches, and angle of incidence. Our numerical calculations show that the optical properties are governed by resonances of the individual helices, yet modified by interaction effects. Furthermore, our study shows possibilities and limitations regarding performance optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.