Abstract

Hybrid nanocarriers with multifunctional properties have wide therapeutic and diagnostic applications. We have constructed hollow silica nanogolf balls (HGBs) and gold-embedded hollow silica nanogolf balls (Au@SiO2 HGBs) using the layer-by-layer approach on a symmetric polystyrene (PS) Janus template; the template consists of smaller PS spheres attached to an oppositely charged large PS core. ζ Potential measurement supports the electric force-based template-assisted synthesis mechanism. Electron microscopy, UV-vis, and near-infrared (NIR) spectroscopy show that HGBs or Au@SiO2 HGBs are composed of a porous silica shell with an optional dense layer of gold nanoparticles embedded in the silica shell. To visualize their cellular uptake and imaging potential, Au@SiO2 HGBs were loaded with quantum dots (QDs). Confocal fluorescent microscopy and atomic force microscopy imaging show reliable endocytosis of QD-loaded Au@SiO2 HGBs in adherent HeLa cells and circulating red blood cells (RBCs). Surface-enhanced Raman spectroscopy of Au@SiO2 HGBs in RBC cells show enhanced intensity of the Raman signal specific to the RBCs' membrane specific spectral markers. Au@SiO2 HGBs show localized surface plasmon resonance and heat-induced HeLa cell death in the NIR range. These hybrid golf ball nanocarriers would have broad applications in personalized nanomedicine ranging from in vivo imaging to photothermal therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.