Abstract

Gold-coated fused-silica electrospray (ES) emitters based on vapor-deposited adhesion layers of titanium have been manufactured to investigate the possibilities of producing durable ES emitters applicable in chip-based analytical devices. The stabilities of the emitters were studied by both electrospray and electrochemical experiments and a marked increase in the emitter lifetime, compared to that for Cr/Au coated emitters, was found for the Ti/Au emitters in the ES durability tests. This indicates that Ti (rather than Cr) adhesion layers should be used in association with large-scale fabrication of ES emitters by vapor-deposition techniques. The lifetime of about 500-700 hours also allowed the Ti/Au-coated emitter to be used as an integrated part of a capillary liquid chromatography column coupled to a mass spectrometer in a series of LC/MS experiments. The Ti/Au coating was further studied by electrochemical techniques and scanning electron microscopy in conjunction with X-ray spectroscopy. It is shown that the eventual failure of the Ti/Au emitters in ES experiments was due to an almost complete detachment of the gold layer. Experimental evidence suggests that the detachment of the gold coating was due to a reduced adhesion to the titanium layer during oxidation in positive electrospray. Most likely, this was caused by the formation of an oxide layer on the titanium film. It is thus shown that unlimited emitter stabilities are not automatically obtained even if the metallic adhesion layer is stabilized by an oxide formation under positive electrospray conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.