Abstract

Ultralong cadmium oxide nanowires were synthesized in high yield on gold-coated silicon substrates by using a vapor transport process. Cadmium vapor generated by the carbothermal reduction of CdO powder in a tube furnace heated to 500 degrees C was carried to the substrate zone by an argon flow with a trace amount of oxygen. The CdO nanowires grew via a vapor-liquid-solid growth mechanism. The diameters of the nanowires are approximately 40-80 nm, and can reach lengths of 30-50 mum. Because the nanowire formation was gold particle catalyzed, patterned nanowire growth on substrates can be achieved. These nanowires grew along the [111] direction and have slightly rough surfaces due to the presence of crystalline CdO shells formed via a physical vapor deposition process. Interesting CdO nanowires with a necklace-like morphology were also observed in a small region of the substrate, where the oxygen supply may be ample to facilitate the lateral growth of rhombohedron-shaped crystals over the straight wires. Electron diffraction and high-resolution TEM results suggest that these side crystals should grow epitaxially on the wire surfaces. The band gap of the CdO nanowires with smoother surfaces was determined to be approximately 2.53 eV. These nanowires exhibit a relatively weak emission band centered at approximately 550 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.