Abstract

The alkyne unit is a versatile building block in organic synthesis and the development of selective multifunctionalization of alkynes is an important object of research in this field. Herein, we report an interesting gold-catalyzed, four-component reaction that achieves the oxo-arylfluorination or oxo-arylalkenylation of internal aromatic or aliphatic alkynes, efficiently breaking a carbon-carbon triple bond and forming four new chemical bonds. The reaction divergence can be controlled by site-directing functional groups in the alkynes; the presence of a phosphonate unit favors the oxo-arylfluorination, while the carboxylate motif benefits oxo-arylalkenylation. This reaction is enabled by an Au(I)/Au(III) redox coupling process using Selectfluor as both an oxidant and a fluorinating reagent. A wide range of structurally diverse α,α-disubstituted ketones, and tri- or tetra-substituted unsaturated ketones have been prepared in synthetically valuable yields and with excellent chemo-, regio- and stereoselectivity. The gram-scale preparation and late-stage application of complex alkynes have further enhanced their synthetic value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call