Abstract
AbstractThe tandem intramolecular hydroarylation of alkynes accompanied by a 1,2‐aryl shift is described. Harnessing the unique electron‐rich character of 1,4‐dihydropyrrolo[3,2‐b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2‐aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π‐expanded, centrosymmetric pyrrolo[3,2‐b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six‐membered rings accompanied with a 1,2‐aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7‐membered rings. Steady‐state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S‐shaped N‐doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time‐dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.