Abstract

AbstractIn the past, numerous impressive methodologies have been developed in homogeneous gold catalysis, typically using alkynes, allenes, or different non‐conjugated diyne systems as starting materials. While there are applications catalyzed by other transition metals, the use of 1,3‐butadiyne derivatives has been largely neglected in gold catalysis. In this work we present an efficient gold‐catalyzed method focusing on the functionalization of this specific type of diynes. The starting materials can be synthesized via simple Glaser Coupling, starting from cheap, highly variable, terminal alkynes. These homocoupling products, which are often observed as undesirable side‐products in Sonogashira reactions, can be converted into versatile 1,3‐butadiene derivatives in alcohol as a solvent and nucleophile under mild conditions. The possible field of application of the 1,3‐butadiene derivatives known from the literature is very broad and ranges from a use as transistor or OLED material to a use as an enzyme inhibitor. The approach presented here offers an attractive and highly effective way to versatile functionalized 1,3‐butadiene derivatives.magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.