Abstract

Ultrasound (US) imaging has high potential in monitoring high-intensity focused US (HIFU) treatment due to its superior temporal resolution. However, US monitoring is often hindered by strong HIFU interference, which overwhelms the echoes received by the imaging array. In this study, a method of Golay-encoded US monitoring is proposed to visualize the imaged object for simultaneous HIFU treatment. It effectively removes HIFU interference patterns in real-time B-mode imaging and improves the metrics of image quality, such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and contrast ratio (CR). Compared to the pulse-inversion sequence, the N -bit Golay sequence can boost the echo magnitude of US monitoring by another N times and, thus, exhibits higher robustness. Simulations show that a sinusoidal HIFU waveform can be fully eliminated using Golay decoding when the bit duration of the N -bit Golay sequence ( N is the power of 4) coincides with either odd (Case I) or even (Case II) integer multiples of the HIFU quarter period. Experimental results also show that the Golay decoding with Case II can increase the PSNR of US monitoring images by more than 30 dB for both pulse- and continuous-wave HIFU transmissions. The SSIM index also effectively improves to about unity, indicating that the B-mode image with HIFU transmission is visually indistinguishable from that acquired without HIFU transmission. Though Case I is inferior to Case II in the elimination of even-order HIFU harmonic, they together enable a more flexible selection of imaging frequencies to meet the required image resolution and penetration for Golay-encoded US monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.