Abstract

Cell shape changes during cytokinesis in eukaryotic cells have been attributed to contractile forces from the actomyosin ring and the actomyosin cortex. Here we propose an additional mechanism where active pumping of ions and water at the cell poles and the division furrow can also achieve the same type of shape change during cytokinesis without myosin contraction. We develop a general mathematical model to examine shape changes in a permeable object subject to boundary fluxes. We find that hydrodynamic flows in the cytoplasm and the relative drag between the cytoskeleton network phase and the water phase also play a role in determining the cell shape during cytokinesis. Forces from the actomyosin contractile ring and cortex do contribute to the cell shape, and can work together with water permeation to facilitate cytokinesis. To influence water flow, we osmotically shock the cell during cell division, and find that the cell can actively adapt to osmotic changes and complete division. Depolymerizing the actin cytoskeleton during cytokinesis also does not affect the contraction speed. We also explore the role of membrane ion channels and pumps in setting up the spatially varying water flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call