Abstract
Visually guided distance perception reflects a relationship of geometrical optical variables with the effort required when traversing the distance. We probed how the representations encoding optical variables might define this relationship. Participants visually judged distances on sloped surfaces and reproduced these distances over flat terrain by walking while blindfolded. We examined the responses for the effects of optical variables (i.e., angular declinations from eye height) and tested whether four measures of trial-by-trial effort moderated the use of the represented optical variables. We predicted that observation time and response speed relative to the observed distance would accentuate the effects of encoded optical variables, and that response time and response speed relative to the traversed distance would reduce the effects of those variables. The results confirmed all of the effects except those of observation time. Given the benefits of longer study for strengthening a memory trace, the failure of observation time to predict the use of optical variables raises questions about the representational encoding of visual traces for distance perception. Relationships among optical variables and other effort measures implicate the interaction of processes across multiple time scales, as in cascade dynamics. Cascade dynamics may provide new directions for accounts of visually guided distance perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.