Abstract
The dependence of the contact angle on the size of a nanoscopic droplet residing on a flat substrate is traditionally ascribed solely to line tension. Other contributions, stemming from the droplet geometry dependence of the surface tension and line tension, are typically ignored. Here, we perform molecular dynamics simulations of water droplets of cylindrical morphology on surfaces of a wide range of polarities. In the cylindrical geometry, where the line tension is not operative directly, we find significant contact angle dependence on the droplet size. The effect is most pronounced on hydrophilic surfaces, with the contact angle increase of up to 10° with a decreasing droplet size. On hydrophobic surfaces, the trend is reversed and considerably weaker. Our analysis suggests that these effects can be attributed to the Tolman correction due to the curved water-vapor interface and to a generalized line tension that possesses a contact angle dependence. The latter is operative also in the cylindrical geometry and yields a comparable contribution to the contact angle as the line tension itself in case of spherical droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Chemical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.