Abstract

In this paper we show how to redress a shortcoming of the path integral scheme for fermionic superfluids and superconductors. This approach is built around a simultaneous calculation of electrodynamics and thermodynamics. An important sum rule, the compressibility sum rule, fails to be satisfied in the usual calculation of the electromagnetic and thermodynamic response at the Gaussian fluctuation level. Here we present a path integral scheme to address this inconsistency. Specifically, at the leading order we argue that the superconducting gap should be calculated using a different saddle point condition modified by the presence of an external vector potential. This leads to the well known gauge-invariant BCS electrodynamic response and is associated with the usual (mean field) expression for thermodynamics. In this way the compressibility sum rule is satisfied at the BCS level. Moreover, this scheme can be readily extended to address arbitrary higher order fluctuation theories. At any level this approach will lead to a gauge invariant and compressibility sum rule consistent treatment of electrodynamics and thermodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call