Abstract
Higher order necessary conditions for a minimizer of an optimal control problem are generally obtained for systems whose dynamics is continuously differentiable in the state variable. Here, by making use of the notion of set-valued Lie bracket, we obtain a Goh-type condition for a control affine system with Lipschitz continuous dynamics and unbounded controls. In order to manage the simultaneous lack of smoothness of the adjoint equation and of the Lie bracket-like variations we make use of the notion of Quasi Differential Quotient. We conclude the paper with a worked out example where the established higher order condition is capable to rule out the optimality of a control verifying the standard maximum principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.