Abstract

Iron oxide may interact with other pollutants in the aquatic environments and further influence their toxicity, transport and fate. The current study was conducted to investigate the biodegradation of 2,4-dinitrophenol (2,4-DNP) in the presence of iron oxide of goethite under anoxic condition using nitrate as the electron acceptor. Experiment results showed that the degradation rate of 2,4-DNP was improved by goethite. High performance liquid chromatography-mass spectra analysis results showed that goethite promoted degradation and transformation of 2,4-diaminophenol and 2-amino-4-nitrophenol (2-nitro-4-aminophenol). Microbial community analysis results showed that the abundance of Actinobacteria, which have the potential ability to degrade PAHs, was increased when goethite was available. This might partially explain the higher degradation of 2,4-DNP. Furthermore, another bacterium of Desulfotomaculum reducens which could reduce soluble Fe(III) and nitrate was also increased. Results further confirmed that nanomaterials in the aquatic environment will influence the microbial community and further change the transformation process of toxic pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.