Abstract

Early detection of wildfires has been limited using the sun-synchronous orbit satellites due to their low temporal resolution and wildfires’ fast spread in the early stage. NOAA’s geostationary weather satellites GOES-R Advanced Baseline Imager (ABI) can acquire images every 15 min at 2 km spatial resolution, and have been used for early fire detection. However, advanced processing algorithms are needed to provide timely and reliable detection of wildfires. In this research, a deep learning framework, based on Gated Recurrent Units (GRU), is proposed to detect wildfires at early stage using GOES-R dense time series data. GRU model maintains good performance on temporal modelling while keep a simple architecture, makes it suitable to efficiently process time-series data. 36 different wildfires in North and South America under the coverage of GOES-R satellites are selected to assess the effectiveness of the GRU method. The detection times based on GOES-R are compared with VIIRS active fire products at 375 m resolution in NASA’s Fire Information for Resource Management System (FIRMS). The results show that GRU-based GOES-R detections of the wildfires are earlier than that of the VIIRS active fire products in most of the study areas. Also, results from proposed method offer more precise location on the active fire at early stage than GOES-R Active Fire Product in mid-latitude and low-latitude regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call