Abstract

Surface insolation is one of the major indicators for climate research over the Earth system. For the climate research, long-term data and wide range of spatial coverage from the data observed by two or more of satellites of the same orbit are needed. It is important to improve the continuity and consistency of the derived products, such as surface insolation, from different satellites. In this study, surface insolations based on Geostationary Operational Environmental Satellite (GOES-9) and Multi-functional Transport Satellites (MTSAT-1R) were compared during overlap period using physical model of insolation to find ways to improve the consistency and continuity between two satellites through comparison of each channel data and ground observation data. The thermal infrared brightness temperature of two satellites show a relatively good agreement between two satellites : root- mean square error (RMSE)=5.595 Kelvin; Bias=2.065 Kelvin. Whereas, visible channels shown a quite different values, but it distributed similar tendency. And the surface insolations from two satellites are different from the ground observation data. To improve the quality of retrieved insolations, we have reproduced surface insolation of each satellite through adjustment of the Cloud Factor, and the Cloud Factor for GOES-9 satellite is modified based on the analysis result of difference channel data. As a result, the insolations estimated from GOES-9 for cloudy conditions show good agreement with MTSAT-1R and ground observation : RMSE=83.439 W m -2 Bias=27.296W m -2 . The result improved accuracy confirms that the modification of Cloud Factor for GOES-9 can improve the continuity and consistency of the insolations derived from two or more satellites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call